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Abstract

This project focused on the development of a novel contrebtetic framework with a set of
tractable computational methods for robust manipulatiosh @ptimal control of inhomogeneous
guantum ensembles. Engineering the time evolution of quargnsembles in a desired man-
ner by using electromagnetic pulses of appropriate shagpdraguency is an indispensable step
that enables many applications in quantum control, sucluakar magnetic resonance (NMR)
spectroscopy and imaging (MRI), laser cooling, solid sfatgsics, quantum computation, and
guantum information processing. This project carried ofutrmlamental investigation of ensem-
ble control systems. New methods based on geometric cah&oty were established to analyze
controllability of quantum ensembles through polynom@@ximations, which inspired the de-
velopment of a unified computational method based on psgedtsl approximations for solving
optimal ensemble control problems. This newly developadmaational method has been used
to design optimal pulses for protein NMR spectroscopy, Whiave been experimentally imple-
mented yielding a significant sensitivity enhancement dlverconventional pulses. The scope of
this project was extended beyond the control of quantumrebles to general ensemble systems,
where controllability characterization for linear and hoear ensemble systems was provided, and
efficient optimization-free computational methods forioy@l control synthesis for such systems
were developed.

Accomplishments and New Findings

The objective of this project is to carry out a fundamentaéstigation of ensemble control prob-
lems involving the guidance of a large number or a continudistrmicturally similar dynamical
systems by the use of a common open-loop control. This clapsoblems originates from the
study of the complex dynamics of large-scale quantum sysién®, 3]. The novel achievements
made through this funding support lead to further theoaétiod practical developments in control
theory with broad impact on the advancement of state-cfithguantum technologies.

Fifteen journal [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,18],and thirteen peer-reviewed
conference [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 8i¢rs have been published through
the funding support period. Our research is multidiscgatyn and these papers appear in leading
scientific journals and international conference proasgsliacross several disciplines including
control theory and engineering, applied mathematics,ipByand bioengineering. The significant
achievements and new findings through the support of thisS#®JIP funding are summarized
below.

1 Controllability of Ensemble Systems

We have extended the notion of ensemble controllabilitystmeted in our previous work on
guantum systems [3, 32] to general linear and nonlineamebleesystems described below.



1.1 Finite-Dimensional Time-Varying Linear Ensemble Systms

We derived the necessary and sufficient controllabilityditimns for an ensemble of finite-dimensional
time-varying linear systems indexed by a paramgtearying over a compact séf, given by

CX(1,5) = A, )X (1) + Bl Ault), ek CR )
where the state iX € M C R", andA € L"(D) andB € Ly*™(D) aren x n.andn x m
matrices, respectively, whose elements are complex-etalue and L, functions defined on a
compact seD = [0,7] x K C R?. The ensemble is controlled by the open-loop inpu&
L30,T]. We derived a Fredholm integral equation defined by the Hpstate operator that
characterizes the dynamics of the ensemble, given by

(Lu)(8) = / (0,0, 6)B(0, B)u(0)do = £(5). @

whered(t, 0, ) is the transition matrix for the inhomogeneous sysf€m, 5) = A(t, 3) X (t, ),
£(B) = @0, T, 8)Xr(B) — Xo(B), and X, (5) and X (F) are the prescribed initial and terminal
states. We showed that controllability of the ensemblessy$l) is related to the singular system of
the compact operatdr as in (2), and is characterized by its singular values arglan functions
[7]. We also derived an accompanying optimal ensemble obliatv as an infinite sum of weighted
eigenfunctions of the operatdr[7].

1.2 Nonlinear Ensemble Systems

The dynamics of a (weakly forced) nonlinear oscillator candescribed by the phase-reduced
model,6 = f(0) + Z(#)u(t), wheref is the phase variablg/, represents the system’s baseline
dynamics/ is known as the phase response curve (PRC)uand/ C R is the external stimulus
[33]. Phase models are widely employed in physics, cheynistid biology [34] to study rhythmic
systems where the oscillatory phase, but not the full state,be observed, and where the PRC
can be obtained experimentally. Employing tools from getimeontrol theory, we have analyzed
the controllability of an ensemble of isolated nonlineacibstors described by; = fi(0;) +
Zi(0)u(t),i =1,..., N,wheref; andZ; are real-valued functions ande R [19, 16]. We showed
that controllability is determined by the periodicity, @currence, of; and then by f, Z} 4, that

is, the Lie algebra generated iy= (fi, ..., fy) andZ = (Z1,...,Zn)".

2 Computational Optimal Ensemble Control

2.1 A Unified Computational Method for Optimal Pulse Design n Quantum
Control

Designing an external field (a pulse sequence) that guidasaatgm ensemble from an initial
state to a desired target state in an optimal manner is a fogclizl step in many applications in
guantum control. Analytical solutions to such an optimalemble control problem are in general
arduous to obtain or entirely unavailable, with the excaptf a few special cases. Inspired by
the method of converting an ensemble control problem to bBleno of polynomial approximation
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Figure 1: Experimental excitation profiles of broadbandulses. (a) The optimal broadbandpulse shape was
derived by the multivariate pseudospectral method withelspective number of discretizations in time and frequency
N = 36 andN,, = 12, to cover the bandwidth-40, 40] kHz with limited rf amplitudeB; (t) < 20 kHz for all ¢
and maximum duratiofi’ = 120us. (b) The excitation profiles correspond to the optimal Gb@and pulse (red) and
conventional hard pulse (black).
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Figure 2:HSQC spectra comparison. The-!3C correlated HSQC spectra dfC,'°N] GB1 sample using optimal
inversion pulses (a), standard Bruker adiabatic invergidses (Crp60.0.5.20.1) (b), and conventional hard inoess
(c). Spectra on the left of each pair were recorded whef?@dnversion pulses were on resonance (at 50 ppm), while
the spectra on the right were recorded when'#t@-inversion pulses were 31 kHz (at -200 ppm) off resonanctkeo
up-field.

proposed in our previous work [3, 32], we developed a unifedutational method for optimal
pulse design in quantum control based on multidimensiosaligospectral approximations, by
which a continuous-time optimal control problem of pulseida is discretized to a constrained
nonlinear optimization problem using multivariate intelgting polynomials [6, 10]. This is the
first work introducing pseudospectral methods to the quartulse design community.

Applications to Protein NMR Spectroscopy: Recently, in collaboration with Harvard Medical
School, we have designed optimal broadband excitatigl)(and inversion £) pulses for pro-
tein NMR spectroscopy using this newly developed methodeséhroadband pulses have been
experimentally implemented, yielding a significant seni$jt enhancement over the conventional
hard pulse and adiabatic pulse while requiring a much shduwetion and lower energy [6]. The
optimal pulse shape and the corresponding experimentahéra profile of the broadband inver-
sion pulse are shown in Figure 1(a) and 1(b), respectivehe @xcitation profile was recorded
with resonance offset ranging from -60 kHz to 60 kHz in stef@@ kHz and showed that our opti-
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Figure 3: Optimal control of an ensemble of harmonic oscillators ag3in An ensemble of harmonic oscillators
is steered (a) from the shape of a star to the shape of a mableTlee color indicates the natural frequency of the
samples, where red and blue denete= 10 andw = —10, respectively. (b) displays the ensemble control that
accomplishes the desired transfer.
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Figure 4: Frictionless quantum transport of atoms. (a) An ensembktahs with the frequencies € [0.5,1] is
transported from the initial stat®, 0, 0)’ to the target statgl, 0, 1)’. (b) The ensemble control law that accomplishes
the desired transport is computed using the SVD method itbeskin Section 2.2.

mal pulse has a noticeably higher average excitation pfiée the designed bandwidth 40, 40]
kHz than the conventional hard pulse. The two-dimensiopatsa in Figure 2 illustrate a signif-
icant sensitivity enhancement over a conventional hardgpahd adiabatic pulse while requiring
a much shorter duration - approximately a 20 times sensitaihancement over adiabatic pulses
with a much shorter duration (128 versus 50Qus) [6]. In addition, this pseudospectral method
can easily be modified to solve problems with other objestisich as minimum-energy and
time-optimal pulses, and requires much less computatipoaker and time than state-of-the-art
numerical methods for pulse design in NMR and MRI [6], sucthesGRAPE algorithm [35] and
the Krotov method [36].

Convergence of the Multidimensional Pseudospectral Metlsh We have, moreover, studied the
convergence properties of this multivariate pseudosalatiethod for optimal ensemble control in
Sobolev space, and it has been shown that given appropeigi#arity conditions on the system
dynamics and the control function, a sequence of optimaltiwis to the discretized problem
converges to an optimal solution of the original continutioree optimal control problem [12, 20].



2.2 A Direct SVD Algorithm for Optimal Ensemble Control Synthesis for
Linear Systems

As described in Section 1.1, the ensemble controllabilityditions for time-varying linear sys-
tems as in (1) are characterized by the singular values ancbtinesponding singular functions of
the linear operator (2) that governs the system dynamicss Adw finding led us to develop an
optimization-free computational algorithm based on timgsiar value decomposition (SVD) for
the synthesis of optimal ensemble control laws for suchalirmsemble systems [26]. The idea
is to approximate the action of the compact operdtas in (2) on a functiom € L}'[0,7] by a
matrix acting on an appropriate vector of sampled values of

This SVD based algorithm, for example, has been succegsisdid to design optimal controls
that steer the ensemble system (1) between any desiredstdigurations. A canonical example
is to control an ensemble of harmonic oscillators,

d | z(tw) | |0 —w x1(t, w) u(t) 3

E{xg(t,w)]_{w 0:||:.I'g(t,td)}+|i'l}(t):|’ 3)
with a variation, or uncertainty, in their frequenciese [w;,ws] C R. Figure 3 displays initial
and final configurations between which the ensemble systgmi{8w € [—10, 10] is transferred
by the indicated optimal controls. Figure 4 illustrates thi@imum-energy frictionless quantum
transport of atoms with a variation in their frequencies\gs harmonic trap [26, 17]. It is shown
that the optimal ensemble control law displayed in Figut® 4 able to compensate for the varia-
tion in the frequency and achieve the desired transporthEunore, an iterative procedure based

on this SVD method was developed for optimal control syrth&s bilinear ensemble systems
[29].

3 Minimum-Time Frictionless Atom Cooling

Adiabatic processes are ubiquitous in cold atom physiadgau magnetic resonance, optics and
other fields [37, 38, 39]. Although useful for preparing statobustly with respect to perturbations,
these processes may become impractical due to their lorgioir This has prompted a surge of
theoretical and experimental activities to find shortcatadiabaticity in quantum systems. Such
a task can be formulated as time-optimal control of quantynmadhics. We investigated several
optimal control problems motivated by promising applioat in quantum optics and coherent
spectroscopy. These include time-optimal control of iickess atom cooling in harmonic traps
[5], which is a core of modern quantum technology [40, 41, 4&¢tionless decompression in
minimum time of Bose-Einstein condensates [13], which isoakorse for atomic physics exper-
iments; and constrained minimum-energy control for deye spin systems [4]. We solved these
optimal control problems analytically and verified the deswith a pseudospectral method.
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